
Case Study – Movie
API

Isabel
Matula

Overview

Objective

The aim of the project
was to develop an
API which provides
users with access to
information about
different movies,
directors, and genres.
Users can sign up
and create a list of
their favorite movies.

Tools

This project utilized
MongoDB, Express,
and Node.js as well
as Postman for
testing the endpoints
of the API. For
authentication
purposes, I’ve used
JWT (JSON Web
Token).

Duration

The project was
completed within a
timeframe of two
weeks.

Purpose and Context

I created a REST API for
an application called
“myMovie" that interacted
with a database storing
movie data. Afterwards, I
built the client-side
component using React.
Resulting in a full-stack
web application
demonstrating the use of
the MERN stack, including
APIs, web servers,
databases, authentication,
and more.

2

REST API
A REST API is a web service built on
RESTful architecture. It uses HTTP
methods like GET, POST, PUT, and
DELETE for CRUD operations, and URLs
to represent resources. For example,
HTTP endpoints were defined to access
collections like 'movies' and 'users' for
tasks such as retrieving user info or
updating movie details. These endpoints
were tested using Postman.

3

Endpoints

4

Create Non-Relational Database

MongoDB organizes data into collections of
documents. Each collection represents a type of
data entity, and each document represents an
instance of that entity. MongoDB's dynamic
schema allows for flexible data storage, where
each document can have different attributes.
This means you can easily add or remove data
without changing the schema. For my movie app,
I created two collections: "users," where each
document represented a user (with fields like
username and birthday), and "movies," where
each document represented a movie (with fields
like title and genre).

5

Authentication &
Authorization

Authentication

• Initially, user authentication
is handled through basic
HTTP authentication. When
users log in, they provide a
username and password,
which will be sent in the
header of the HTTP request.

• After successful
authentication, the
application generates a JWT
for the user. Subsequent
requests will then be
authenticated and
authorized using JWT-based
authentication.

Authorization

• For authorization the
application uses JWT
authentication to ensure
that only authenticated
users with a valid token
can access the API
endpoints.

6

Data Security

• Implemented
password hashing to
ensure that user
passwords remain
unreadable, also by
the database
manager.

Conclusion
The initial goal of building an API using MongoDB,
Express, and Node.js was successfully achieved.
The final product allows users to access
information about various movies, directors, and
genres, update their profiles, and create a list of
favorite movies. The most challenging part of the
project was implementing authentication and
authorization, as well as ensuring data security by
hashing passwords. This process consumed a
significant amount of time. However, creating the
database with Mongoose was relatively
straightforward and enjoyable.

Thorough testing was crucial to confirm that all
endpoints functioned correctly. Moving forward, I
would dedicate even more time to improving
authentication and data security, recognizing their
crucial importance. Overall, this project provided
valuable insights and reinforced the significance of
robust security measures in application
development. 7

	Case Study – Movie API
	Overview
	REST API
	Endpoints
	Create Non-Relational Database
	Authentication & Authorization
	Conclusion

