Case Study — Movie
API

Isabel
Matula

OPPHAN

“THE HORROR FILM OF THE YEAR™

\ =/

i RS \ ’v

Orphan (2009)

Directed by: Jaume Collet-Serra

S NIGHTMARE.]

ﬁNELM STREET Y

A Nightmare on Elm Street

I KNOW WHAT YOU
DID LAST-SUMMER

s
| Know What You Did Last
Summer (1997)
Directed by: Jim Gillespie

Davio Arquerte Neve CampeeLt CourTeney Cox
‘SKEET ULRICH wo DREW BARRYMORE
3 .2/

The Babysitter (2017)
Directed by: McG

KATE BECKINSALE LUKE WILSON

VACANCY

Objective

The aim of the project
was to develop an
APl which provides
users with access to
information about
different movies,
directors, and genres.
Users can sign up
and create a list of
their favorite movies.

Overview

Tools

This project utilized
MongoDB, Express,
and Node.js as well
as Postman for
testing the endpoints
of the API. For
authentication
purposes, I've used
JWT (JSON Web
Token).

Duration

The project was
completed within a
timeframe of two
weeks.

Purpose and Context

| created a REST API for
an application called
“myMovie" that interacted
with a database storing
movie data. Afterwards, |
built the client-side
component using React.
Resulting in a full-stack
web application
demonstrating the use of
the MERN stack, including
APls, web servers,
databases, authentication,
and more.

REST API

A REST APl is a web service built on
RESTful architecture. It uses HTTP
methods like GET, POST, PUT, and
DELETE for CRUD operations, and URLs
to represent resources. For example,
HTTP endpoints were defined to access
collections like 'movies' and 'users' for
tasks such as retrieving user info or
updating movie details. These endpoints
were tested using Postman.

(@name| getAllMovies
* @parap {Object} req - Express req
* @param {Object} res
* @throws {Erro

¥ @returns {Object} -

app.get('/movies’,
await Movies.find()

.then((movies) => {

res.status(201).json(movies);

)
.catch((err) => {

console.error(err);

res.status(56@).send('Error:

Returns JSON respo

on
-‘E L

est object
- Express response o:]ect.

r} - If there is an error while retrieving movies from the databas

passport.authenticate('jwt', { session: false }), async (req,

+ err);

containing all movies.

Endpoint

. . HTTP
Business Logic URL method Request body data format Response body data format
Return a list of
ALL movies to |['movies GET None A JSON object holding data about all movies
the user
A JSON cbject holding data about a single movie, containing title, vear, genre, director. Example: { "Genre": { "MName": "Horror",
Feturn data "Description™: "Horror is & film genre that seeks to elicit fear or disgust in its audience for entertainment purposes.” },
about a single o ira- "Director”: "Namz": "Wes Craven", "Bio": "Wes Craven has become synonymous with genre bending and innovative horror, challengin
e (o |[movies Titte] GET |None e T e e e o e iinan e _noeneing
moa'xeb_\'txtle to audiences with his bold wvision.", “Birth": "1%39", "Death": "2815" }, "_id": "65493be802d2f93ced6e®2cd™, "Title": "Scream”,
the user "Description™: "A year after the murder of her mother, a teenage girl is terrorized by & masked killer who targets her and her
friends by using scary movies as part of a deadly game.”, "ImagePath™: "scream.png”, "Featured”: true, “Year™: "1996" }
Return data T : : o L " w, m v esonn
., ’ - A JSON cbject holding data about a single genre, containing genre name,_ description. Example: { "Name™: "Horror", "Description”:
about a genre by||/movies/genre/[genreName] GET MNone i . . = = eT == L. ; . .
hame - = Horror is & film genre that seeks to elicit fear or disgust in its audience for entertainment purposes.” }
Return data A JSON cobject holding data about a single director, containing director name, bio, birth and death yvear. Example: { "Name": "Wes Craven”,
about a director ||/movies/directors/[directorName] GET None "Bio": "Wes Craven has become synonymous with genre bending and innovative horror, challenging audiences with his bold vision.”,
by name "Birth": "1938", "Death": "2815" }
Return a list of .o .
‘users GET None A JSON cbject holding data about all users
ALL users =
Return data b . . . L . i -
about a sinele A JSON cbject holding data about a single user, containing username, password, email, birthday, favorite movies. Example: { " dd":
ser by = ‘users/[Usemame] GET None "654955e502d2f93ced6ed2cc”, "Username": "Lara", "Password": "password3", "Email": “user3@email.com", "Birthday": "1997-84-
- 18T@0:@2:20.0087", "FavoriteMovies™: ["6549494c82d2f93ced6e@2c3”, "6549459102d2f93cedeed2ca”] }
username
A JSON object holding data about the user to add,
Allow new users POST structured like: { ID: Integer, Username: A JSON cbject holding data about the user that was added, including an ID. Example: { "Username": "Testuser”, "Password”: "1234",
users to register || String, Password: String, Email: String, "Email”: “test@mail.com", "FavoriteMovies™: [], "_id": "654b8b77d73c652a6f31a9f2", "__ v": @ }
Birthday: Date }
Allow users to A JSON object holding data about the user which
indate their needs to be updated, structured like: i A JSON cbject holding data about the updated user information. Example: { "_id": "654b859f9a9bce791lecasc5”, "Username™: "Isy",
ul:er info by (‘users/[Usemame] PUT Username: reg.body.Username, Password: "Password”: "newpassword", "Emsil": "isy@mail.com”, "FavoriteMovies": ["65493d51@2d2f93cede@Zcl”, "65493bed@2d2f93cedsen2ce” 1,
Userna.me- req.body.Password, Email: req.body.Email, "_w": @, "Birthday": "1997-12-13T00:00:08.800I" }
Birthday: req.body.Birthday }
Allow users to .- . e .
add 2 movie to A JSON object holding data about the updated user information. Example: { "_id": "6549568202d2f93cedGed2cd", "Username": "Ryan",
heir List of (‘users/[Username]/movies/ [MovieID]|POST None "Password”: "4321", "Email": "test2@mail.com", "Birthday": "1993-02-82T00:00:00.0@0Z", "FavoriteMowies: [
-~ - "65494d2b02d2f93ced6ed2c6”, "65494bd602d2T93cedbed2c5”]
tavorites
Allow users to T : o f : Wi, w T W o "
i A JSON object holding data about the updated user information. Example: { "_id": "6549568202d2f93cedbeB2cd”, "Username": "Ryan”,
TEmOoVe a movie f . . " " " " " Im " = " e " " . " " s = "
from their list Of.users [Username]/'movies/ [MeovieID][DELETE |[None Password”: "4321", "Email": “test2@mail.com”, "Birthday": "1993-02-22T00:0@:00.022L", "FavoriteMovies™: [
-~ - "65494d2b02d2f93cedEeB2ce™])
tavorites
Allow existing
users to (‘'users/[Usemname] DELETE |[None Text message indicating whether the user deregister successfully.

deregister

Create Non-Relational Database

MongoDB organizes data into collections of
documents. Each collection represents a type of
data entity, and each document represents an
instance of that entity. MongoDB's dynamic
schema allows for flexible data storage, where
each document can have different attributes.
This means you can easily add or remove data
without changing the schema. For my movie app,
| created two collections: "users," where each
document represented a user (with fields like
username and birthday), and "movies," where
each document represented a movie (with fields
like title and genre).

I

ImagePath:
Featured: true,
Year:

{
_id: ObjectId("65493d8182d2f93ced6ed2cl"),

Title:
Description:

Genre: {
Description:

¥

'
Director: {

I

Director: {
Name:
Bio:
Birth:

1

I

ImagePath:
Featured: true,
Year:

_id: ObjectId("6549U9uUce2d2f93ced6en2c3"),

Authentication &
Authorization

Authentication

Initially, user authentication
is handled through basic
HTTP authentication. When
users log in, they provide a
username and password,
which will be sent in the
header of the HTTP request.

After successful
authentication, the
application generates a JWT
for the user. Subsequent
requests will then be
authenticated and

authorized using JWT-based

authentication.

Authorization

* For authorization the
application uses JWT
authentication to ensure
that only authenticated
users with a valid token
can access the API
endpoints.

Data Security

Implemented
password hashing to

ensure that user
passwords remain
unreadable, also by
the database
manager.

Conclusion

The initial goal of building an APl using MongoDB,
Express, and Node.js was successfully achieved.
The final product allows users to access
information about various movies, directors, and
genres, update their profiles, and create a list of
favorite movies. The most challenging part of the
project was implementing authentication and
authorization, as well as ensuring data security by
hashing passwords. This process consumed a
significant amount of time. However, creating the
database with Mongoose was relatively
straightforward and enjoyable.

Thorough testing was crucial to confirm that all
endpoints functioned correctly. Moving forward, |
would dedicate even more time to improving
authentication and data security, recognizing their
crucial importance. Overall, this project provided
valuable insights and reinforced the significance of
robust security measures in application
development.

	Case Study – Movie API
	Overview
	REST API
	Endpoints
	Create Non-Relational Database
	Authentication & Authorization
	Conclusion

